This page compares the speed of "plt.plot" and "plt.scatter" to generate same following figure:
It seems that "plt.plot" is faster than "plt.scatter" to plot simple and large point scatter plot.
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from numpy import random
Nsample = 1000
xx = random.normal(size=Nsample)
yy = random.normal(size=Nsample)
plt.plot¶
%%timeit -n 3 -r 1
ax = plt.subplot(1,1,1)
ax.plot(xx, yy, 'o', markerfacecolor='none', markeredgecolor='k', alpha=0.5, markersize=3)
ax.set_aspect('equal','datalim')
plt.savefig('pltplot1.png', dpi=150, bbox_inches='tight', pad_inches=0.02)
plt.show()
plt.scatter¶
%%timeit -n 3 -r 1
ax = plt.subplot(1,1,1)
ax.scatter(xx, yy, marker='o', facecolors='none', edgecolors='k',alpha=0.5, s=9)
ax.set_aspect('equal','datalim')
plt.savefig('pltscatter1.png', dpi=150, bbox_inches='tight', pad_inches=0.02)
plt.show()
Let's increase the Nsample.
Nsample = 100000
xx = random.normal(size=Nsample)
yy = random.normal(size=Nsample)
plt.plot¶
%%timeit -n 3 -r 1
ax = plt.subplot(1,1,1)
ax.plot(xx, yy, 'o', markerfacecolor='none', markeredgecolor='k', alpha=0.01, markersize=3)
ax.set_aspect('equal','datalim')
plt.savefig('pltplot2.png', dpi=150, bbox_inches='tight', pad_inches=0.02)
plt.show()
plt.scatter¶
%%timeit -n 3 -r 1
ax = plt.subplot(1,1,1)
ax.scatter(xx, yy, marker='o', facecolors='none', edgecolors='k',alpha=0.01, s=9)
ax.set_aspect('equal','datalim')
plt.savefig('pltscatter2.png', dpi=150, bbox_inches='tight', pad_inches=0.02)
plt.show()