The results are:
and
This code shows how to visualize streamlines with continuous lines using python and matplotlib.pyplot.
When you search "electric field lines python" or something in Google, you would see the images which use the streamplot. Although it is easy way to visualize the direction of the vector fields, electric field must be continuous lines as you know. In this page, electric field lines around the point charges are calculated using scipy.ode (ordinary differential equations) module.
This code is based on following wonderful tips blog posts:
In [1]:
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import ode as ode
from matplotlib import cm
from itertools import product
In [2]:
class charge:
def __init__(self, q, pos):
self.q=q
self.pos=pos
def E_point_charge(q, a, x, y):
return q*(x-a[0])/((x-a[0])**2+(y-a[1])**2)**(1.5), \
q*(y-a[1])/((x-a[0])**2+(y-a[1])**2)**(1.5)
def E_total(x, y, charges):
Ex, Ey=0, 0
for C in charges:
E=E_point_charge(C.q, C.pos, x, y)
Ex=Ex+E[0]
Ey=Ey+E[1]
return [ Ex, Ey ]
def E_dir(t, y, charges):
Ex, Ey=E_total(y[0], y[1], charges)
n=np.sqrt(Ex**2+Ey*Ey)
return [Ex/n, Ey/n]
def V_point_charge(q, a, x, y):
return q/((x-a[0])**2+(y-a[1])**2)**(0.5)
def V_total(x, y, charges):
V=0
for C in charges:
Vp=V_point_charge(C.q, C.pos, x, y)
V = V+Vp
return V
In [3]:
# charges and positions
charges=[ charge(-1, [-1, 0]), charge(-1, [1, 0]), charge(1, [0, 1]), charge(1, [0, -1]) ]
# calculate field lines
x0, x1=-3, 3
y0, y1=-3, 3
R=0.01
# loop over all charges
xs,ys = [],[]
for C in charges:
# plot field lines starting in current charge
dt=0.8*R
if C.q<0:
dt=-dt
# loop over field lines starting in different directions
# around current charge
for alpha in np.linspace(0, 2*np.pi*15/16, 16):
r=ode(E_dir)
r.set_integrator('vode')
r.set_f_params(charges)
x=[ C.pos[0] + np.cos(alpha)*R ]
y=[ C.pos[1] + np.sin(alpha)*R ]
r.set_initial_value([x[0], y[0]], 0)
while r.successful():
r.integrate(r.t+dt)
x.append(r.y[0])
y.append(r.y[1])
hit_charge=False
# check if field line left drwaing area or ends in some charge
for C2 in charges:
if np.sqrt((r.y[0]-C2.pos[0])**2+(r.y[1]-C2.pos[1])**2)<R:
hit_charge=True
if hit_charge or (not (x0<r.y[0] and r.y[0]<x1)) or \
(not (y0<r.y[1] and r.y[1]<y1)):
break
xs.append(x)
ys.append(y)
In [4]:
# calculate electric potential
vvs = []
xxs = []
yys = []
numcalcv = 300
for xx,yy in product(np.linspace(x0,x1,numcalcv),np.linspace(y0,y1,numcalcv)):
xxs.append(xx)
yys.append(yy)
vvs.append(V_total(xx,yy,charges))
xxs = np.array(xxs)
yys = np.array(yys)
vvs = np.array(vvs)
In [5]:
plt.figure(figsize=(5.5, 4.5),facecolor="w")
# plot field line
for x, y in zip(xs,ys):
plt.plot(x, y, color="k")
# plot point charges
for C in charges:
if C.q>0:
plt.plot(C.pos[0], C.pos[1], 'ro', ms=8*np.sqrt(C.q))
if C.q<0:
plt.plot(C.pos[0], C.pos[1], 'bo', ms=8*np.sqrt(-C.q))
# plot electric potential
clim0,clim1 = -2,2
vvs[np.where(vvs<clim0)] = clim0*0.999999 # to avoid error
vvs[np.where(vvs>clim1)] = clim1*0.999999 # to avoid error
plt.tricontour(xxs,yys,vvs,10,colors="0.3")
plt.tricontourf(xxs,yys,vvs,100,cmap=cm.jet)
cbar = plt.colorbar()
cbar.set_clim(clim0,clim1)
cbar.set_ticks([-2,-1.5,-1,-0.5,0,0.5,1,1.5,2])
cbar.set_label("Electric Potential")
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.xlim(x0, x1)
plt.ylim(y0, y1)
plt.axes().set_aspect('equal','datalim')
plt.savefig('electric_force_lines_1.png',dpi=250,bbox_inches="tight",pad_inches=0.02)
plt.show()
In [6]:
# charges and positions
charges=[ charge(1, [-1, 0]), charge(-1, [1, 0]), charge(-1, [0, 1]), charge(1, [0, -1]) ]
# calculate field lines
x0, x1=-3, 3
y0, y1=-3, 3
R=0.01
# loop over all charges
xs,ys = [],[]
for C in charges:
# plot field lines starting in current charge
dt=0.8*R
if C.q<0:
dt=-dt
# loop over field lines starting in different directions
# around current charge
for alpha in np.linspace(0, 2*np.pi*15/16, 16):
r=ode(E_dir)
r.set_integrator('vode')
r.set_f_params(charges)
x=[ C.pos[0] + np.cos(alpha)*R ]
y=[ C.pos[1] + np.sin(alpha)*R ]
r.set_initial_value([x[0], y[0]], 0)
while r.successful():
r.integrate(r.t+dt)
x.append(r.y[0])
y.append(r.y[1])
hit_charge=False
# check if field line left drwaing area or ends in some charge
for C2 in charges:
if np.sqrt((r.y[0]-C2.pos[0])**2+(r.y[1]-C2.pos[1])**2)<R:
hit_charge=True
if hit_charge or (not (x0<r.y[0] and r.y[0]<x1)) or \
(not (y0<r.y[1] and r.y[1]<y1)):
break
xs.append(x)
ys.append(y)
In [7]:
# calculate electric potential
vvs = []
xxs = []
yys = []
numcalcv = 300
for xx,yy in product(np.linspace(x0,x1,numcalcv),np.linspace(y0,y1,numcalcv)):
xxs.append(xx)
yys.append(yy)
vvs.append(V_total(xx,yy,charges))
xxs = np.array(xxs)
yys = np.array(yys)
vvs = np.array(vvs)
In [8]:
plt.figure(figsize=(5.5, 4.5),facecolor="w")
# plot field line
for x, y in zip(xs,ys):
plt.plot(x, y, color="k")
# plot point charges
for C in charges:
if C.q>0:
plt.plot(C.pos[0], C.pos[1], 'ro', ms=8*np.sqrt(C.q))
if C.q<0:
plt.plot(C.pos[0], C.pos[1], 'bo', ms=8*np.sqrt(-C.q))
# plot electric potential
clim0,clim1 = -2,2
vvs[np.where(vvs<clim0)] = clim0*0.999999 # to avoid error
vvs[np.where(vvs>clim1)] = clim1*0.999999 # to avoid error
plt.tricontour(xxs,yys,vvs,10,colors="0.3")
plt.tricontourf(xxs,yys,vvs,100,cmap=cm.jet)
cbar = plt.colorbar()
cbar.set_clim(clim0,clim1)
cbar.set_ticks([-2,-1.5,-1,-0.5,0,0.5,1,1.5,2])
cbar.set_label("Electric Potential")
plt.xlabel('$x$')
plt.ylabel('$y$')
plt.xlim(x0, x1)
plt.ylim(y0, y1)
plt.axes().set_aspect('equal','datalim')
plt.savefig("electric_force_lines_2.png",dpi=250,bbox_inches="tight",pad_inches=0.02)
plt.show()