The results are:
This page shows how to draw electric force lines around point charges.
The colors of the electric force lines vary according to the electric potential in the point.
This code is based on following web sites:
python matplotlib with a line color gradient and colorbar - stack overflow -
URL: https://stackoverflow.com/questions/36074455/python-matplotlib-with-a-line-color-gradient-and-colorbar
Examples of plotting (multi-)colored lines
URL: http://nbviewer.jupyter.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb
Visualizing streamlines - Number Crunch -
URL: https://www.numbercrunch.de/blog/2013/05/visualizing-streamlines/
python matplotlib with a line color gradient and colorbar - stack overflow -
URL: https://stackoverflow.com/questions/36074455/python-matplotlib-with-a-line-color-gradient-and-colorbar
Examples of plotting (multi-)colored lines
URL: http://nbviewer.jupyter.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb
Visualizing streamlines - Number Crunch -
URL: https://www.numbercrunch.de/blog/2013/05/visualizing-streamlines/
In [1]:
%matplotlib inline
In [2]:
import matplotlib.pyplot as plt
import matplotlib.collections as mcoll
import numpy as np
from matplotlib import cm
from scipy.integrate import ode as ode
from itertools import product
In [3]:
def colorline(
x, y, v, cmap='copper', norm=plt.Normalize(-3.0, 3.0),
linewidth=0.5, alpha=1.0):
x,y,v = np.array(x),np.array(y),np.array(v)
segments = make_segments(x, y)
lc = mcoll.LineCollection(segments, array=v, cmap=cmap, norm=norm,
linewidth=linewidth, alpha=alpha)
ax = plt.gca()
ax.add_collection(lc)
return lc
def make_segments(x, y):
"""
Create list of line segments from x and y coordinates, in the correct format
for LineCollection: an array of the form numlines x (points per line) x 2 (x
and y) array
"""
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
return segments
In [4]:
class charge:
def __init__(self, q, pos):
self.q=q
self.pos=pos
def E_point_charge(q, a, x, y):
return q*(x-a[0])/((x-a[0])**2+(y-a[1])**2)**(1.5), \
q*(y-a[1])/((x-a[0])**2+(y-a[1])**2)**(1.5)
def E_total(x, y, charges):
Ex, Ey=0, 0
for C in charges:
E=E_point_charge(C.q, C.pos, x, y)
Ex=Ex+E[0]
Ey=Ey+E[1]
return [ Ex, Ey ]
def E_norm(x,y, charges):
Ex, Ey = E_total(x, y, charges)
return np.sqrt(Ex**2+Ey*Ey)
def E_dir(t, y, charges):
Ex, Ey=E_total(y[0], y[1], charges)
n=np.sqrt(Ex**2+Ey*Ey)
return [Ex/n, Ey/n]
def V_point_charge(q, a, x, y):
return q/((x-a[0])**2+(y-a[1])**2)**(0.5)
def V_total(x, y, charges):
V=0
for C in charges:
Vp=V_point_charge(C.q, C.pos, x, y)
V = V+Vp
return V
In [5]:
# charges and positions
charges=[ charge(-1, [-1, 0]), charge(-1, [1, 0]), charge(1, [0, 1]), charge(1, [0, -1]) ]
# calculate field lines
x0, x1=-3, 3
y0, y1=-2.5, 2.5
R=0.01
# loop over all charges
xs,ys = [],[]
es = []
vs = []
for C in charges:
# plot field lines starting in current charge
dt=0.8*R
if C.q<0:
dt=-dt
# loop over field lines starting in different directions
# around current charge
for alpha in np.linspace(0, 2*np.pi*31/32, 32):
r=ode(E_dir)
r.set_integrator('vode')
r.set_f_params(charges)
x=[ C.pos[0] + np.cos(alpha)*R ]
y=[ C.pos[1] + np.sin(alpha)*R ]
e=[ E_norm(x[0],y[0],charges) ]
v=[ V_total(x[0],y[0],charges)]
r.set_initial_value([x[0], y[0]], 0)
while r.successful():
r.integrate(r.t+dt)
x.append(r.y[0])
y.append(r.y[1])
e.append(E_norm(r.y[0],r.y[1],charges))
v.append(V_total(r.y[0],r.y[1],charges))
hit_charge=False
# check if field line left drwaing area or ends in some charge
for C2 in charges:
if np.sqrt((r.y[0]-C2.pos[0])**2+(r.y[1]-C2.pos[1])**2)<R:
hit_charge=True
if hit_charge or (not (x0<r.y[0] and r.y[0]<x1)) or \
(not (y0<r.y[1] and r.y[1]<y1)):
break
xs.append(x)
ys.append(y)
es.append(e)
vs.append(v)
In [6]:
# calculate electric potential
vvs = []
xxs = []
yys = []
numcalcv = 300
for xx,yy in product(np.linspace(x0,x1,numcalcv),np.linspace(y0,y1,numcalcv)):
xxs.append(xx)
yys.append(yy)
vvs.append(V_total(xx,yy,charges))
xxs = np.array(xxs)
yys = np.array(yys)
vvs = np.array(vvs)
In [7]:
fig, ax = plt.subplots(facecolor="w",figsize=(6,5))
for x,y,v in zip(xs,ys,vs):
lc = colorline(x, y, v, cmap='jet',linewidth=0.75)
cbar = plt.colorbar(lc)
cbar.set_label("Electric Potential")
clim0,clim1 = -2,2
vvs[np.where(vvs<clim0)] = clim0*0.999999 # to avoid error
vvs[np.where(vvs>clim1)] = clim1*0.999999 # to avoid error
plt.tricontour(xxs,yys,vvs,10,colors="0.3",linewidths=0.75)
plt.xlim(-2.5, 2.5)
plt.ylim(-2.5, 2.5)
ax.set_aspect("equal")
plt.savefig("electric_force_lines_change_lc_1.png",dpi=250,bbox_inches="tight",pad_inches=0.02)
plt.show()
In [8]:
# charges and positions
charges=[ charge(-1, [-1, 0]), charge(1, [1, 0]), charge(1, [0, 1]), charge(-1, [0, -1]) ]
# calculate field lines
x0, x1=-2.5, 2.5
y0, y1=-2.5, 2.5
R=0.01
# loop over all charges
xs,ys = [],[]
es = []
vs = []
for C in charges:
# plot field lines starting in current charge
dt=0.8*R
if C.q<0:
dt=-dt
# loop over field lines starting in different directions
# around current charge
for alpha in np.linspace(0, 2*np.pi*31/32, 32):
r=ode(E_dir)
r.set_integrator('vode')
r.set_f_params(charges)
x=[ C.pos[0] + np.cos(alpha)*R ]
y=[ C.pos[1] + np.sin(alpha)*R ]
e=[ E_norm(x[0],y[0],charges) ]
v=[ V_total(x[0],y[0],charges)]
r.set_initial_value([x[0], y[0]], 0)
while r.successful():
r.integrate(r.t+dt)
x.append(r.y[0])
y.append(r.y[1])
e.append(E_norm(r.y[0],r.y[1],charges))
v.append(V_total(r.y[0],r.y[1],charges))
hit_charge=False
# check if field line left drwaing area or ends in some charge
for C2 in charges:
if np.sqrt((r.y[0]-C2.pos[0])**2+(r.y[1]-C2.pos[1])**2)<R:
hit_charge=True
if hit_charge or (not (x0<r.y[0] and r.y[0]<x1)) or \
(not (y0<r.y[1] and r.y[1]<y1)):
break
xs.append(x)
ys.append(y)
es.append(e)
vs.append(v)
In [9]:
# calculate electric potential
vvs = []
xxs = []
yys = []
numcalcv = 300
for xx,yy in product(np.linspace(x0,x1,numcalcv),np.linspace(y0,y1,numcalcv)):
xxs.append(xx)
yys.append(yy)
vvs.append(V_total(xx,yy,charges))
xxs = np.array(xxs)
yys = np.array(yys)
vvs = np.array(vvs)
In [10]:
fig, ax = plt.subplots(facecolor="w",figsize=(6,5))
for x,y,v in zip(xs,ys,vs):
lc = colorline(x, y, v, cmap='jet',linewidth=0.75)
cbar = plt.colorbar(lc)
cbar.set_label("Electric Potential")
clim0,clim1 = -2,2
vvs[np.where(vvs<clim0)] = clim0*0.999999 # to avoid error
vvs[np.where(vvs>clim1)] = clim1*0.999999 # to avoid error
plt.tricontour(xxs,yys,vvs,10,colors="0.3",linewidths=0.75)
plt.xlim(-2.5, 2.5)
plt.ylim(-2.5, 2.5)
ax.set_aspect("equal")
plt.savefig("electric_force_lines_change_lc_2.png",dpi=250,bbox_inches="tight",pad_inches=0.02)
plt.show()